cross-posted from: https://slrpnk.net/post/24690127
Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.
The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.
The “technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity,” the researchers wrote in a study published by the IEEE Journal of Photovoltaics.
The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer’s improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials “by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems,” per IE.
I thought this has already been done. Guess there’s some nuance to it that is above my understanding of it.
Anyhow, advancements in solar are cool in my book.
Just wanted to drop a comment.
I love solar. It’s the best form of energy that’s attainable by the average person.
Hey it’s those guys that invented MP3s.
It really whips the sun’s ass.
I’m not sure what to think about the Fraunhofer institute in general. They have made some nice discoveries/inventions in the past, such as audio compression algorithms and such. That is why i hyped them for a bit.
But they really disappointed me with their writings on solar panels in the past few years.
They said that the efficiency of solar panels today is too low to deploy them widely in practice, which is simply not true. They tried pushing Perovskite solar cells for no reason.
I’m not sure what to think about this article’s idea. On one hand, adding lenses to solar parks makes them significantly more complicated and therefore expensive to build. Also, if the parks have complicated physical forms, they’re more susceptible to wind, and that could damage them.
On the other hand, yes, adding lenses means you need fewer actual solar panels for the same amount of energy harvested.
I’ll therefore put it in the category of inconclusive inventions, together with the idea of adding a motor to the solar panels so they can track the sun. That would also make the solar panels more efficient, but also more complicated and more prone to mechanical failure.
I’d like to know what they’re going to do about the heating issue. Concentrating solar radiation carries with it an increased heat load. And heat reduces solar PV efficiency. I’m already losing about 30% in summer when the panels heat up.
This was my first question too! I thought heat makes them wear out faster.
The only thing slowing down the transition from fossil fuels to renewables is the same impediment it has always been: oil money protecting itself.
Solar panels are already quite cheap. What we need is much cheaper grid forming inverters so we can stop destabilizing the grid with solar.
Grid forming will just mean the keep running the house when the power goes off, it’s not safe for them to be pushing power when it’s disappeared, that has been set by regulation in many countries.
If the cost of panels drops significantly, there would be more capital available to spend on inverters, even if they stay at the current prices, still decreasing the cost of deployment. But yes. 😄
“Has the potential to contribute…” Wow. Amazing.
I like the understatement. Shame they spoiled it with the “game changing” claim at the beginning.
It’s because the understatement came from the paper and the bullshit came from the science reporter.
If I had a penny for every time I heard about new advancements about to revolutionise solar panel technology, I’d have glazed the bloody Sahara with them by now.
Would the cost chart of PV cells look something like this?
Even crazier that it’s a logarithmic graph.
Wait for something fucking idiotic like:
“U.S. government to implement 5,000% tax on new solar technology…”
Solar is too woke and Marxist for the current US government.
“also, revenue from new tax will be used to build new coal mines staffed by concentration camp inmates 1”
SLASH THE GAME CHANGING BREAKTHROUGH
Remember gang, stuff like this means 10-15 years before you see it in market.
What was the stuff like this of 15 years ago ?
More expensive and less efficient.
Honestly solar panels and electric cars. I know those existed over 15 years ago, but they weren’t serious market options until like 5 or so years ago.
First known electric car was built in 1837. Yes, 1837, not 1937. In 1910’s and 1920’s there were tens of thousands electric cars in USA and Europe. So electric cars has been here for a long time right now.
First (known) solar panel was built in 1954.
Yes, hence the name motor vehicle. His point was modern implementations of EVs and solar panels. 10-20 years is very common for transition to production. It takes time to scale up manufacturing and that’s only after the manufacturers have actually decided/agreed to take on the risk of a new product line. Lithium ion batteries were invented in the 80s, but didn’t see broad deployment until the 00s.
How does concentrating the sunlight like this not start a fire? Or wouldn’t this at least cause panel electronics to overheat?
I would imagine they’re not concentrating maximally. Just enough to increase efficiency.
I am not a scientist so please correct me if I am off base, but did it really take them this long to attempt to focus light onto PV cells using a fresnel lens?
My hobby as a 15 year old was buying broken projectors to harvest the fresnel lenses in the lamp on top. They could focus sunlight so powerfully that you could burn shit. I didn’t do that, surprisingly. I was like Marge Simpson, I just thought they were neat.
Adding to what the others wrote, solar cells become less efficient at power conversion (light -> electricity) as the temp of the solar cell materials (semiconductors) increases. So the issues is how to get more photons to the semiconductor without heating it up.
Not being any kind of solar energy expert, my initial thought was how the cell’s would hold up under the increased heat, and what technology (if any) they’d be using to monitor/mitigate. The article does briefly mention the cells achieving ~33% @ ~167° F, and does mention (what seems to be tangential) technologies that allow for cells to be nailed down as if they were shingles.
My guess is that it isn’t that they finally using techniques that seem obvious to us, but that they’ve developed supporting tech to mitigate the detrimental effects of using magnification.
OK, take that Fresnel lens that you were using to melt pennies and then focus it on a PV cell that is also made of metal. What might be the expected response? The science in this case is making PV cells that can handle the intense heat.
That makes sense. If I understood everyone clearly, it’s not the idea to use a fresnel that’s new here, it’s the fact that we just haven’t yet had anything capable of withstanding those temperatures and still allowing for the piezoelectric effect to happen.
IIRC, this sort of thing has been floated before. The issue is that you can’t just focus that much light on the solar cell. It’ll burn out.
Wouldn’t this be negated by the fact, that the same area of roof now has less actual PV cell on it? Since the light gets concentrated on a smaller area?
I think the point is that you can replace one big solar panel with one big lens and a small solar panel. The footprint on the roof is the same, but the implication is a big glass lens is cheaper than a big solar panel.
I think the idea is that it’s the same amount of light is being used but the actual expensive part of the solar cell is cheaper and designed to take the increased heat. So the same size “solar unit” on the roof collecting the same amount of light and generating the same amount of energy but cheaper overall. At least that was my take. Correct me if I’m wrong.
Yeah, a similar amount for less money could be feasible. I guess. Not sure how cheap the sanding of the lens structure is though