Um, wait. I would think that violates some sort of law (but I guess maybe we haven’t codified this?). I mean, building plans expect standards in materials, right? So how can a building meet codes if the materials are not within the expected specs?
That was one example, you can also strap roofs to install sheet metal cladding. Is that not structural?
Strap a ceiling? There’s a ceiling use for you.
I figured if I gave you a real world example you could do a little research of your own.
No, that’s not structural since the furring strips are not integral to load bearing capacity of the structure.
In your sheet metal example, they are only there for visual reasons - to help keep the roof flat. The roof can be put down without the furring strips. It might bend, but it still function as a roof.
The roof can be put down without the furring strips. It might bend, but it still function as a roof.
What…? Roof trusses go parallel with the length of the cladding panel, you require furring strips on the perpendicular to install them. Just like in a wall with the studs vertical, you need horizontal furring to install them.
These required larger furring strips due to truss spacing.
Furring strips are not visual lmfao. They are structural components in a lot of assemblies. Without knowing the assembly you can’t say if they are or aren’t structural, that’s the entire point I’ve been trying to make here. You aren’t the quickest one are you? I’ve pointed this out multiple times. There are thousands of use cases where furring strips are structural. To say they aren’t structural is fucking asinine lmfao.
Those aren’t furring strips in that photo. That’s dimensional lumber. In this case, those spans are large enough that they require the strength of actual lumber.
Those aren’t furring strips in that photo. That’s dimensional lumber. In this case, those spans are large enough that they require the strength of actual lumber.
Yes I literally just explained that in detail in the comment you responded to……
Furring strips are used in plenty of places, I provide one example where it is used in most residential homes to support drywall.
Is it not structural if it’s holding ceiling drywall…? So why are people still bickering that walls aren’t structural when they still hold drywall up…?
If it’s part of a code wall detail, would that not be structural…?
What’s with the pedantism over something like this to try and save face over not knowing what a furring strip is?
Furring strips and drywall don’t count as load bearing. Structural means that it carries the weight of the overlying structure. Basically if the building falls down if that element is missing, it’s structural. So staircases for instance are almost never structural. Many interior walls are not load bearing so they can get knocked down without consequence. You can also split a room by building a wall that won’t be load bearing.
Furring strips and drywall don’t count as load bearing.
Except for the thousands of use cases where they are used for lateral bracing to support the structure….
Like in shear walls… strapped drywall ceilings… load bearing walls….
Yes they can be used non-structurally, I’ve never claimed otherwise, yet you are ignoring the fact that they can, and are used in load bearing structural applications……
Drywall is structural, when used on block walls it helps provide lateral support.
This is why being pedantic usually backfires.
Drywall is inherently structural.
Regardless. It’s furring strips, you want to argue furring strips aren’t used in structural applications? They are used in all three applications the person said they haven’t used them in. They also claimed to be a wood wroker elsewhere, so I don’t see how they would use anything structural anyways….
I’m not an architect, but I have stayed at a Holiday Inn.
The easiest way to think about an element being “structural” or not is is to consider what can happen if you remove that element - will the roof/wall collapse on top of you or not. If the answer is no, the roof/wall will not fall down, it’s not “Structural” or “Load Bearing” If the roof/wall can fall down on if you remove it, it is “structural” or “load bearing”.
So, using your example, if you were to remove the drywall and furring strips from that cement block wall, will the wall and ceiling be in danger of collapse? If it is, then it was structural. If not, then it wasn’t structural.
The Architects and Civil Engineers that I have known, do not consider drywall or furring strips to “structural” when designing a building. I’m going with their consensus on this matter.
To someone from central europe it’s always weird how houses get build from wood in the US. 😅 I imagine you can hear ~everything happening ~anywhere in the house?
Depends. The cheap houses, yeah, there’s as fair bit of noise, but you can’t hear everything. From downstairs, you can hear when someone walks across the room above you, but not when they’re walking in other upstairs rooms. And from rooms on the same level, you can hear if someone is talking loudly in the room next door, but not enough to make out what they say unless they’re yelling.
Well-built houses or buildings made for occupancy by multiple families usually have better sound insulation between the units, so it’s not always an issue.
I want to say that stick-built homes are really not so fragile as people seem to think. There’s tradeoffs, of course, and ways to build them that make them uncomfortable at best and blatantly unsafe at worst. That being said, they’re pretty sturdy, fairly easy to repair and modify, and relatively quick and cheap to build.
it’s extremely common for americans to dismiss apartments because they simply cannot fathom the idea of housing that actually blocks noise, it’s one of the primary arguments i see used against denser housing.
Yup. Over here in the Western US, nearly every apartment is built as cheaply as possible and run by slumlords that will do everything that they can to refuse to return deposits. Painting over bugs and black mold between tenants is the norm, in my experience, not the exception. Add to that that insulation between apartments is scant, if present and frequently there are no physical barriers between apartment building attic accesses (in every top-story apartment that I’ve been in, it would be easily possible to gain access to others’ apartments via the attic and the attics also act to channel sound between all top apartments).
Not really, unless the house was built incredibly cheaply with thin studs and crappy drywall.
Wood is pretty decent at blocking sound – it the voids between the studs that’s an issue. Filling them with sound deadening insulation solves that problem.
It’s not as good at blocking sound as a masonry wall obviously, but it’s “good enough” at a fraction of the price.
The 2x4s that have been sized this way do meet structural code. It was found that a full 2x4 is way over spec’d for what they were used for, so why bother wasting extra parts of the tree?
Pretty much everything built with dimensional lumber in the last century has been done with undersized 2x4s, and it’s fine. The name stuck for historical reasons. Companies that build houses and order this stuff by the pallet all know what the real size is, and so do building inspectors.
Rough 2x4s were 2" x 4". Then we started finishing them for better consistency, taking about 0.5" from each dimension. Later we started using saws with narrower kerfs to have less loss due to saw blade width, better cutting and planing systems so the rough size could be smaller and still have the same finished size, then they lowered finished size some more.
Um, wait. I would think that violates some sort of law (but I guess maybe we haven’t codified this?). I mean, building plans expect standards in materials, right? So how can a building meet codes if the materials are not within the expected specs?
You simply change the expected specs…
Agreed, seems like some kind of weights and measures violation.
I’m going to guess they can get away with this because 2x2s aren’t intended for structural use. I’ve never built one into a floor, wall or ceiling.
Sounds like the situation here… good call
Used for furring strips everywhere. Line a block wall with them and sheet it for example.
Would you call that a “structural use?”
That was one example, you can also strap roofs to install sheet metal cladding. Is that not structural? Strap a ceiling? There’s a ceiling use for you.
I figured if I gave you a real world example you could do a little research of your own.
No, that’s not structural since the furring strips are not integral to load bearing capacity of the structure.
In your sheet metal example, they are only there for visual reasons - to help keep the roof flat. The roof can be put down without the furring strips. It might bend, but it still function as a roof.
What…? Roof trusses go parallel with the length of the cladding panel, you require furring strips on the perpendicular to install them. Just like in a wall with the studs vertical, you need horizontal furring to install them.
These required larger furring strips due to truss spacing.
Furring strips are not visual lmfao. They are structural components in a lot of assemblies. Without knowing the assembly you can’t say if they are or aren’t structural, that’s the entire point I’ve been trying to make here. You aren’t the quickest one are you? I’ve pointed this out multiple times. There are thousands of use cases where furring strips are structural. To say they aren’t structural is fucking asinine lmfao.
Those aren’t furring strips in that photo. That’s dimensional lumber. In this case, those spans are large enough that they require the strength of actual lumber.
Yes I literally just explained that in detail in the comment you responded to……
Structural use means load bearing. So no.
Furring strips are used in plenty of places, I provide one example where it is used in most residential homes to support drywall.
Is it not structural if it’s holding ceiling drywall…? So why are people still bickering that walls aren’t structural when they still hold drywall up…?
If it’s part of a code wall detail, would that not be structural…?
What’s with the pedantism over something like this to try and save face over not knowing what a furring strip is?
Furring strips and drywall don’t count as load bearing. Structural means that it carries the weight of the overlying structure. Basically if the building falls down if that element is missing, it’s structural. So staircases for instance are almost never structural. Many interior walls are not load bearing so they can get knocked down without consequence. You can also split a room by building a wall that won’t be load bearing.
Except for the thousands of use cases where they are used for lateral bracing to support the structure….
Like in shear walls… strapped drywall ceilings… load bearing walls….
Yes they can be used non-structurally, I’ve never claimed otherwise, yet you are ignoring the fact that they can, and are used in load bearing structural applications……
No, that’s is not structural.
Structural means it’s intended to support and transfer loads in a way that cannot be safely removed.
Since neither the furring strips or drywall are part of a structural requirement, they are not load bearing.
Drywall is structural, when used on block walls it helps provide lateral support.
This is why being pedantic usually backfires.
Drywall is inherently structural.
Regardless. It’s furring strips, you want to argue furring strips aren’t used in structural applications? They are used in all three applications the person said they haven’t used them in. They also claimed to be a wood wroker elsewhere, so I don’t see how they would use anything structural anyways….
I’m not an architect, but I have stayed at a Holiday Inn.
The easiest way to think about an element being “structural” or not is is to consider what can happen if you remove that element - will the roof/wall collapse on top of you or not. If the answer is no, the roof/wall will not fall down, it’s not “Structural” or “Load Bearing” If the roof/wall can fall down on if you remove it, it is “structural” or “load bearing”.
So, using your example, if you were to remove the drywall and furring strips from that cement block wall, will the wall and ceiling be in danger of collapse? If it is, then it was structural. If not, then it wasn’t structural.
The Architects and Civil Engineers that I have known, do not consider drywall or furring strips to “structural” when designing a building. I’m going with their consensus on this matter.
Drywall is not structural on block walls. The blocks are structural themselves.
The drywall may help minimize shifting/settling but the dreary is not a structurally required component of the block wall.
No shit. You’re giving us a master class on it right now.
To someone from central europe it’s always weird how houses get build from wood in the US. 😅 I imagine you can hear ~everything happening ~anywhere in the house?
Depends. The cheap houses, yeah, there’s as fair bit of noise, but you can’t hear everything. From downstairs, you can hear when someone walks across the room above you, but not when they’re walking in other upstairs rooms. And from rooms on the same level, you can hear if someone is talking loudly in the room next door, but not enough to make out what they say unless they’re yelling.
Well-built houses or buildings made for occupancy by multiple families usually have better sound insulation between the units, so it’s not always an issue.
I want to say that stick-built homes are really not so fragile as people seem to think. There’s tradeoffs, of course, and ways to build them that make them uncomfortable at best and blatantly unsafe at worst. That being said, they’re pretty sturdy, fairly easy to repair and modify, and relatively quick and cheap to build.
it’s extremely common for americans to dismiss apartments because they simply cannot fathom the idea of housing that actually blocks noise, it’s one of the primary arguments i see used against denser housing.
Yup. Over here in the Western US, nearly every apartment is built as cheaply as possible and run by slumlords that will do everything that they can to refuse to return deposits. Painting over bugs and black mold between tenants is the norm, in my experience, not the exception. Add to that that insulation between apartments is scant, if present and frequently there are no physical barriers between apartment building attic accesses (in every top-story apartment that I’ve been in, it would be easily possible to gain access to others’ apartments via the attic and the attics also act to channel sound between all top apartments).
It’s a big improvement from making them from straw.
Not really, unless the house was built incredibly cheaply with thin studs and crappy drywall.
Wood is pretty decent at blocking sound – it the voids between the studs that’s an issue. Filling them with sound deadening insulation solves that problem.
It’s not as good at blocking sound as a masonry wall obviously, but it’s “good enough” at a fraction of the price.
The 2x4s that have been sized this way do meet structural code. It was found that a full 2x4 is way over spec’d for what they were used for, so why bother wasting extra parts of the tree?
Pretty much everything built with dimensional lumber in the last century has been done with undersized 2x4s, and it’s fine. The name stuck for historical reasons. Companies that build houses and order this stuff by the pallet all know what the real size is, and so do building inspectors.
These are even smaller than that. A standard 2x4 is 1.5x3.5.
It’s fine, folks. Nothing to see here.
What part of this has to do with dimensional lumber?
It being ugly has absolutely fuckall to do with the structural integrity
Rough 2x4s were 2" x 4". Then we started finishing them for better consistency, taking about 0.5" from each dimension. Later we started using saws with narrower kerfs to have less loss due to saw blade width, better cutting and planing systems so the rough size could be smaller and still have the same finished size, then they lowered finished size some more.
It’s probably 2x2PT or something. There are standards for board widths.