Interesting, I see possible mutual assistance between this project and MisterFPGA, MARS and other FPGA projects.
I guess the real difficulty is getting a fab set up to manufacture the chips. Once again, maybe they can take a page out of another project’s book like armsid or, more aptly the Apollo line of computer upgrades and cycle accurately emulate the functionality in some other freely available silicon.
accurately emulate the functionality in some other freely available silicon
Get a cheap PIC or AVR microcontroller, put it on a DIP-sized carrier board, and write a program to simulate everything you’d see on the data/address and any other IO pins of the Z80 when they are manipulated. There you go, drop-in replacement.
Interesting, I see possible mutual assistance between this project and MisterFPGA, MARS and other FPGA projects. I guess the real difficulty is getting a fab set up to manufacture the chips. Once again, maybe they can take a page out of another project’s book like armsid or, more aptly the Apollo line of computer upgrades and cycle accurately emulate the functionality in some other freely available silicon.
Get a cheap PIC or AVR microcontroller, put it on a DIP-sized carrier board, and write a program to simulate everything you’d see on the data/address and any other IO pins of the Z80 when they are manipulated. There you go, drop-in replacement.