• banneryear1868@lemmy.world
    link
    fedilink
    arrow-up
    0
    ·
    10 months ago

    Same way a printer works, or color blending for that matter, with RGB or CMYK you can make any color. Primary colors and brightness. Greyscales and magentas are extra-spectral.

  • otacon239@feddit.de
    link
    fedilink
    arrow-up
    0
    ·
    10 months ago

    Hue bulbs (and any other RGB LED) can display (almost) any color perceptible to the human eye as it combines the three wavelengths of colors our eyes can detect (red, green and blue) and blends them at different brightnesses. The “millions of colors” sell comes from 16-bit color found all over the place in technology. Here’s more info: https://en.m.wikipedia.org/wiki/High_color

    • Fetus@lemmy.world
      link
      fedilink
      arrow-up
      0
      ·
      10 months ago

      16-bit colour gives us around 65000 colours, 24-bit colour gives us the millions mentioned above.

      • milkytoast@kbin.social
        link
        fedilink
        arrow-up
        0
        ·
        10 months ago

        so is it called 24 bit or 8 bit? I feel like most monitors have 8 bit color and the fancy ones have 10, not 24 and 30

        • BehindTheBarrier@programming.dev
          link
          fedilink
          arrow-up
          0
          ·
          edit-2
          10 months ago

          It’s just the sum. Monitors have 8bit per color, making for 24bit per pixel, giving the millions mentioned. 16bit is actually 4bit per color and then another 4 for a single of those colors. But this has downsides as explained in the article when going form higher bit depth to lower.

          HDR is 10bit per color, and upwards for extreme uses. So it’s sorta true they are 24 or 30 bit, but usually this isn’t how they are described. They normally talk about the bit depth of the individual color.

  • Thorny_Insight@lemm.ee
    link
    fedilink
    arrow-up
    0
    ·
    10 months ago

    Another thing that’s curious about these lights which also applies to your computer/smartphone display aswell is the fact that it’s able to produce yellow color despite only having red, green and blue leds in it. If you open up a yellow picture on your monitor and look closely with a magnifying glass there’s no yellow there.

    • cheese_greater@lemmy.worldOP
      link
      fedilink
      arrow-up
      0
      ·
      10 months ago

      Thats another thing I don’t get. Itf you look at your tv screen real close its all red/green/blue. Every pixel/cell, how does it appear different from far away

      • Classy Hatter@sopuli.xyz
        link
        fedilink
        arrow-up
        0
        ·
        10 months ago

        Human eyes have three kinds of cells (photoreceptors) for color detection. They each react to either red, green or blue light. If more than one of those cells are activated, your brain interprets the light based on what cells activated, and how strongly they activated. If red and green cells activates, the light is seen as yellow. The light is seen as white if all of them activates fully.

        This also means that light bulbs can produce white light by simply producing three wavelengths (colors) of light. The problem with that kind of “fake” white is that colors will look wrong under such light due to the way how objects reflects light. This is very common with low quality LED lights, and even the best smart lights aren’t very good at it. When buying LED lights, you might want to look at the CRI (Color Rendering Index) value and make sure it’s above 90, or as high as possible.

      • Everythingispenguins@lemmy.world
        link
        fedilink
        arrow-up
        0
        ·
        10 months ago

        Okay you really want to fuck with your mind, brown is not a color. You can’t not break down a rainbow and find brown anywhere in it. There is no such thing as brown light. Yet you can see it every day.

  • KptnAutismus@lemmy.world
    link
    fedilink
    arrow-up
    0
    ·
    10 months ago

    that’s how.

    one of the 3 LEDs can have 256 levels of brightness (off included)

    take that to the power of three, and you have 16 million colours.

    but no mortal can actually tell the difference between 255, 255, 255 and 255, 254, 255.