These are just examples, I have no opinion on what is the best.
Something like: I like the cameras from the Galaxy s23, the processor from the latest Pixel, the memory from the Razor. I mean whatever. I suppose Iphones could be included, but I figure it’s more locked in than androids, I could be wrong.
Or even replacing a part from one phone with one that’s better, for personal use? Like, even just putting pixel 7 cameras into a pixel 8 phone.
Besides the factory warrenty, and money spent, is it software? Is it having to reconfigure the hardware? Is it just space in general?
If we all have things we don’t like about our phones, why aren’t we able to just make it more to our liking?
design compatibility issues and proprietary firmware or software
You won’t have any of the electrical or protocol/register info or other data for any of the components unless you’re a manufacturer and most parts aren’t really salvageable separately but are essentially one big glob on the board. Even with the skills, you’d need to reverse engineer some of the most complex and hard to use components ever manufactured for consumer use and somehow fit them in places they were never meant to fit.
And yes, software. The board support for the SOC, mostly. Maybe starting off with a pinephone or something might help, but I doubt even that is open and usable enough.
Software.
The most modular phone right now, which you can open yourself and replace parts with just a screw driver, is the FairPhone. And even that one, you can scavenge parts from older models of the same brand, because the connectors don’t fit. There’s very little space left inside a modern phone.
We should have the right to repair our phones. Imagine if you could never upgrade new parts into your desktop because of a corporation
FairPhone did dip their toes into upgradability with the FP3+ which was basically the same as the FP3 with upgraded camera modules. So people who bought the FP3 were able to buy just the new cameras instead of the whole phone. Unfortunately, the FP4 and FP5 are both again not backwards compatible. Hopefully they start focusing more of maintaining the same design for longer.
Steps are being taken in the right direction. The US has also been making progress, which I’m sure will continue if America doesn’t give up on itself next month.
That said, it’s not nearly enough. As long as the focus is on innovation and growth rather than sustainability, and consumers don’t really give a fuck, it’s going to be difficult to see any change.
But I’m very happy with my Fairphone, and my next laptop will no doubt be a framework. Baby steps.
Imagine you like the shape of the front of a Mini Cooper and the rear of a Ford mustang. You could take the paneling from the interior of a rolls Royce and the seats from a Lamborghini and make a really cool car.
Unfortunately, unlike modern standard PCs, phones are individually designed and built and even models in the same range can’t use each other’s parts or software.
Each component is designed to work with each of the other components and just slapping them together doesn’t necessarily make a new working product.
Modern phone cameras are 99% software at this point. If you took one phones camera and put it onto another phone without adapting the software then the photos will look like ass.
You can’t just unplug something from device X and connect it to device Y. The connectors aren’t standardized. And even if they were they wouldn’t fit because the placement is different. In theory you could take the CPU off of one device and plant it onto another. But have fun with that BGA micro soldering. Plus the connections will be different unless you picked a phone with the exact same CPU. Ram is the only thing you could potentially upgrade. But like good luck.
You’d legitimately have an easier time making a new phone from scratch than trying to piece together 3 different phones.
It’s prohibitively difficult. Like not just hard, but complete redesigns for even fairly small adaptations.
Hardware: The parts just don’t replace each other one for one, and it’s not just where the wires are. Each SOC or component requires a cadre of resistors capacitors, voltages, signal lines that don’t line up well between different products. The boards that these components mount on are many layers thick with wiring hidden in multiple layers. You can’t even just bodge and reroute everything all the time. In many cases the packages wouldn’t even fit in the intended target spot and phones have precious little space to spare. Then for a lot of chips you’ve got thermal considerations.
The 10x camera for an s23 wouldn’t have a chance at fitting in a pixel, the focal lengths are different It literally wouldn’t even fit in the case.
Drivers/software: especially relation to cameras, a lot of third party software can’t even run the full compliment of Samsung cameras. Commands to switch back and forth between lenses aren’t universal. In a lot of cases you can screw around with different camera software and get it to work and make modifications for the cameras to signal when they need changes. But then when you take a s24 which is 64-bit only you can no longer run any of the 32-bit camera software that used to do things like sphere camera. And then even if you did manage to swap sensors out all of the lens correction would be wrong. You’d end up with Chroma and correction issues. The cameras aren’t just giving you what’s off the sensor anymore. A long time ago we used to get big upgrades in picture quality going from one sensor to a new more sensitive sensor, We now do the opposite and use really big sensors that take multiple samples per pixel and we drive those pictures with complicated software or even AI to generate better looking imagery. When all the software and hardwares tuned together to give you a better image and you swap the hardware out it’s a bad thing.
These devices are all very custom they’re very purpose-built around each one of the features and the subcomponents don’t even match up neatly in between different models in the same line. I’m fairly certain you couldn’t even fit an s23u 10x camera into an s24u.
TL;DR it’s essentially as close to impossible as you could make it in just about every way you can imagine.
One time I took apart my Nintendo DS. I broke my Nintendo DS.
Another time I took apart my PS2 controller. I broke my PS2 controller.
Now you want me to scrap parts from a phone, and build from scratch??? Aw hell naw!!!
Capitalism, kind of. Practically, the rest of the way. Mobile parts need to be designed really tightly integrated, because they need to fix exactly into such small spaces, and standardizing them isn’t really feasible without significant pressure on the market (aka, socialism).
The reason desktop PCs can be so standardized is how big they are. Tons of room for customized parts.
LOL, yeah. Capitalism.
The great socialist countries are way ahead with modular, standardized mobile handset components.
Everyone knows the longest-lived PC bus standards came out of the Soviet Union and North Korea in the 80s.
And large businesses worldwide are still running accounting software on the mainframe architecture China’s government developed in the 60s.
You do realize that computers and the internet were invented and developed by the government, right?
Form factor, mostly.
Don’t forget about device drivers. I can’t even install a newer version of Android on my Android phone because the community never managed to get the antenna to work after upgrading the OS.
There were modular phone projects that were killed by google.
But it’s intentionally hard to do it otherwise, to make more money out of broken phones.
I’d say that I could do it for you, even, given sufficient effort, time and money. However, it would be the size of a shoebox. And don’t you dare open that shoebox or else all the parts are going to come falling out.
As long as you’re not selling the phone afterwards I’d say the only thing stopping you would be the skill and knowledge required to do such a thing and the necessary tools.
Keep in mind most of the parts you’re talking about are to some extent proprietary and specifically designed not to be cross compatible, so that may be a big hurdle
All of this stuff is usually fit onto a single board, crammed into a very specific amount of space, and is thoroughly and iterated until it works properly. This isn’t the kind of stuff a home lab does, but you could certainly try. I think it would be damn near impossible to do it better and more reliably than teams of hundreds or thousands of various engineers. It’s not like you can just take a phone CPU and slap it on a random board without a ton of forethought.