See, Apple? Even cars can do it :)

  • 😈MedicPig🐷BabySaver😈@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    5 months ago

    “Battery Station” vs. “Gas Station” should’ve been a no brainer from day one.

    Next best plan should be “electric roads” that are powered by green tech.

    Of course it all would be massively expensive. Sadly, it’s clear that the powers that be to protect Earth’s climate do not give a shit.

    • Gsus4@programming.devOP
      link
      fedilink
      English
      arrow-up
      0
      ·
      5 months ago

      Highways could totally have power lines overhead…the problem is hust finding the best way of getting it to the car safely (I don’t like the trolley-style solution).

      • 😈MedicPig🐷BabySaver😈@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        5 months ago

        Not sure what the “trolley style” is.

        My exposure to electric roads are electro-magnetic rails under the road that provide a constant electric field that cars drive over.

        Honestly, I think it may be possible to build entire roads with enough crushed metal elements in the asphalt/concrete and a slight low power charge throughout the entire surface would be able to keep any vehicle battery at a steady charge.

        But, I’m not a scientist/engineer/electrical specialist, etc …

        • sushibowl@feddit.nl
          link
          fedilink
          English
          arrow-up
          0
          ·
          5 months ago

          Honestly, I think it may be possible to build entire roads with enough crushed metal elements in the asphalt/concrete and a slight low power charge throughout the entire surface would be able to keep any vehicle battery at a steady charge.

          You might be underestimating how much power a car consumes while driving. For example, a Tesla model 3 has an efficiency of about 130 Wh/km in mild weather at highway speeds. Assuming that on the highway you’ll travel 100 km/h, that means you’ll use 130*100 = 13.000 Wh/h, a constant power draw of 13kW. That’s enough to power perhaps 8-12 houses on average.

          A km of road could have, let’s say, 80 cars on it (4 lanes, 20m per car). That means you’d need to pump about a megawatt of power into every kilometer of road to keep them all topped up.

          • Sentient_Modem@lemm.ee
            link
            fedilink
            English
            arrow-up
            0
            ·
            5 months ago

            Does using a period in your number not cause confusion? 13.000 vs 13,000. I first read it is 13 since the zeros mean nothing following a period where im from. No shade, just curious.

            • sushibowl@feddit.nl
              link
              fedilink
              English
              arrow-up
              0
              ·
              5 months ago

              Apologies. I’m from a country where the meaning of the period and comma is reversed compared to the US, so I did it this way out of habit.

          • Crashumbc@lemmy.world
            link
            fedilink
            English
            arrow-up
            0
            ·
            5 months ago

            And that doesn’t seem to take into account transmission losses. Even the best wireless phone chargers are maybe 70% efficient. This may hit 40% if you’re lucky. So double that figure.

    • frezik@midwest.social
      link
      fedilink
      English
      arrow-up
      0
      ·
      5 months ago

      It’s a no brainier, until you deal with standardizing the battery and attachment mechanisms across many manufacturers. Then figuring out the machines necessary to automate the process of removing the battery and swapping in a new one. Then dealing with people who abuse their battery and bringing them to EOL early. Then deploying all of that nationwide.

      Oh, and it limits where you can place the battery. You can’t integrate it into the frame, which has some big advantages in reducing weight.

      Conversely, charging stations are relatively easy. You need to standardize the plug, which ain’t nothing, but it’s far easier than an entire battery release mechanism. The charge stations themselves aren’t much more than a transformer, some high voltage electronics, and some controls. Again, not nothing, but way easier than an automated garage for battery replacement.

      Charge stations were always going to be able to race way ahead in deployment timelines, and we still don’t have enough of them. If we had focused on battery swap stations, we’d be even further behind.